Small Open Economy Model with Domestic Resource Shocks: Monetary Union vs. Floating Exchange Rate

Tor Einarsson University of Iceland

May 2002

Monetary Union: For and Against

For:

- Reduced transaction costs
- Elimination of exchange rate risk
- Prices more transparent across countries

Against:

- Loss of a degree of freedom: the exchange rate,
 - \implies reduced ability to absorb adverse macroeconomic shocks
- Surrender of national sovereignty

Related Literature

Indirect comparison

- Buiter (MPI, 2000): Neither regime owerwhelmingly dominates the other
- Gudmundsson et.al. (MPI,2000): Rather in favour of flexible rates
- Agnarsson et.al. (MPI 2000): EMU would limit the economy's ability to absorb adverse supply shocks

Direct comparison

- Mendoza (JMCB 2001): Dollarization of Mexico could improve welfare:
 - (i) elimination of price and wealth distortions
 - (ii) improved efficiency of financial markets
- Schmitt-Grohé & Uribe (JMCB 2001): Dollarization is marginally Pareto inferior to floating rates + constant money growth or inflation targeting:
 - 'sticky' prices of nontradeables

The Model

Households

$$\max_{\{c_{Dt}, c_{Ft}, l_t, n_t, k_{t+1}^d, b_{t+1}^d, M_{t+1}^d\}} E_0 \sum_{t=0}^{\infty} \beta^t U(c_{Dt}, c_{Ft}, l_t), \quad \beta \in (0, 1)$$
(1)

Budget constraint

$$P_t c_{Dt} + E_t c_{Ft} + P_t [k_{t+1}^d - (1 - \delta)k_t^d] + E_t b_{t+1}^d + M_{t+1}^d$$

$$\leq P_t R_t k_t^d + W_t n_t + R_{Ft} E_t b_t^d + M_t^d + \phi J_t, \quad \phi \in \{0, 1\}$$
 (2)

Cash-in-advance constraint

$$P_t c_{Dt} + E_t c_{Ft} \le M_t^d + A_t \tag{3}$$

Time constraint

$$l_t + n_t \le 1 \tag{4}$$

Euler equations

$$U_l/w = \beta \operatorname{E}\left\{ [R' + (1 - \delta)]U_l'/w' \right\}$$
 (5)

$$U_l/w = \beta \operatorname{E}\left\{ [R_F'(e'/e)]U_l'/w' \right\}$$
(6)

$$U_l/w = \beta \ \mathrm{E}\left\{U_{cD}'/\pi'\right\} \tag{7}$$

$$U_{cF}/U_{cd} = e (8)$$

Firms

$$\max_{K,N} \left\{ F[K, N, H(\theta_D), \theta_G] - RK - wN \right\} \tag{9}$$

F.O.C.

$$F_K = R \tag{10}$$

$$F_N = w (11)$$

The monetary authority

Monetary policy rule (floating exchange rate):

$$M_{t+1} = \mu(S)M_t \tag{12}$$

Under floating, any increment to the money stock is passed on to households as a transfer:

$$M_{t+1} = M_t + J_t$$

The balance of payments

$$V_t = P_t X(\theta_{Ft}, e_t) + E_t H(\theta_{Dt}) - E_t c_{Ft} + R_{Ft} E_t b_t - E_t b_{t+1},$$
(13)

 $\begin{tabular}{ll} Table 1 \\ Summary of Second Moments \\ \end{tabular}$

Icelandic data								
	1961 - 99		1961 - 79		1980 - 99		1988 - 99	
Variable	stdev	$\operatorname{corr} w/y$	stdev	corr w/y	stdev	corr w/y	stdev	$\operatorname{corr} w/y$
\overline{y}	4.21	1.00	4.81	1.00	3.50	1.00	3.20	1.00
c	4.57	0.89	4.85	0.92	4.30	0.92	4.02	0.89
i	12.31	0.80	13.80	0.79	11.17	0.85	13.29	0.90
n	1.97	0.54	1.12	0.41	2.64	0.85	2.05	0.95
w^c	7.71	0.88	8.28	0.89	7.05	0.83	4.60	0.82
e	8.68	-0.75	11.54	-0.82	4.58	-0.68	3.22	-0.51
u/y	3.16	-0.20	3.82	-0.14	2.26	-0.47	2.27	-0.75
eb'/y	4.86	-0.77	4.99	-0.80	4.65	-0.65	3.01	-0.67

Notes: All data are HP-filtered, setting the smoothing parameter to 100. The series on private consumption excludes expenditures on durables; investment includes public works and buildings; w^c denotes the real wage in terms of the coposite consumption good; and u net exports. Data source: National Economic Institute

Icelandic Business Cycle Data: Main Characteristics

- Output volatility relatively large, but decreasing
- Consumption more volatile than output
- Investment/Output volatility fairly typical
- Employment relatively smooth, but decreasingly so
- Real exchange rate strongly countercyclical
- Net exports countercyclical, typical

 $\begin{array}{c} {\rm Table} \ 2 \\ {\rm Summary} \ {\rm of} \ {\rm Second} \ {\rm Moments} \end{array}$

	Icela	ndic data		Model		
	1988 - 99		Floating		Monetary union	
Variable	stdev	corr w/y	stdev	$\operatorname{corr} \mathbf{w}/y$	stdev	corr w/y
\overline{y}	3.20	1.00	3.27	1.00	3.48	1.00
c	4.02	0.89	3.05	0.82	1.60	0.83
i	13.29	0.90	14.01	0.95	11.36	0.95
n	2.05	0.95	2.29	0.91	2.55	0.94
w^c	4.60	0.82	2.56	0.83	1.35	0.83
e	3.22	-0.51	4.27	-0.51	1.86	-0.03
u/y	2.27	-0.75	0.77	-0.81	0.69	0.36
eb'/y	3.01	-0.67	2.97	-0.73	1.25	-0.81

Notes: All data are HP-filtered, setting the smoothing parameter to 100. w^c denotes the real wage in terms of the coposite consumption good; u net exports.

4.3 Wage rigidity: a problem?

Table 3 ${\bf Probabilty \ of} \ \Delta W < 0, \ {\bf percent}$

π	1.02	1.04	1.10
Floating	1.7	< 0.1	< 0.1
Monetary union	15.8	1.5	< 0.1

4.4 Welfare calculus

Compensating variation

$$\mathbb{E}\left[U(\nu c_D, \nu c_F, l)\right] = U(\bar{c}_D, \bar{c}_F, \bar{l})$$

Approximation

$$\nu - 1 = \frac{1}{2} \operatorname{Var}(c_D) + \frac{\eta_1}{2} \operatorname{Var}(c_F)$$

 ${\it Table \ 4}$ Welfare costs of Icelandic business cycles

Regime	Welfare cost
Floating	0.13
Monetary union	0.03